
4-3 Angle Relationships in Triangles

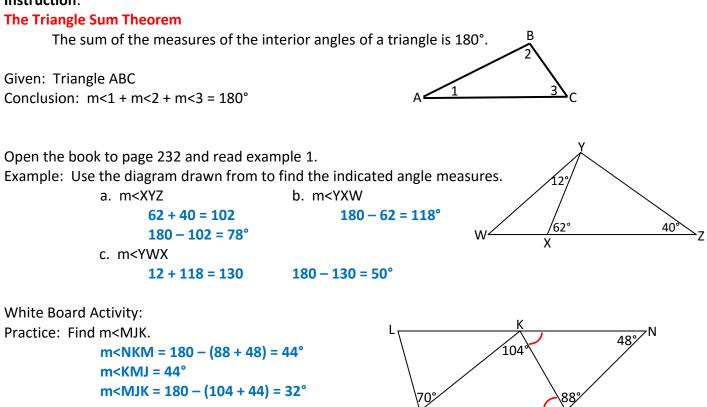
Objectives: G.CO.10: Prove theorems about triangles.

For the board: You will be able to find the measures of interior and exterior angles of triangles and apply these theorems.

Bell Work 4.3:

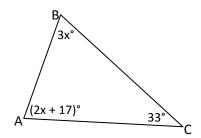
- Find the m<DBA, if m<DBC = 30°, m<C = 70°, and m<D = 80°.
- 2. What is the complement of an angle with measure 17°?

M


3. How many lines can be drawn through N parallel to \widehat{MP} ?

Anticipatory Set:

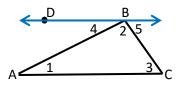
Experiment: Given a triangle, tear off the 3 corners. Arrange them so that they are adjacent angles. What do you notice about the sum of these three angles?


They make a straight angle and thus add to equal 180°

Instruction:

Practice: Find the measure of each angle of $\triangle ABC$.

3x + 2x + 17 + 33 = 180 5x + 50 = 180 5x = 130 x = 26 m<A = 2(26) + 17 = 69° m<B = 3(26) = 78°



An **auxiliary line** is a line that is added to a figure to aid in a proof.

The Triangle Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

Given: Triangle ABC w/DB ||ACProve: m<1 + m<2 + m<3 = 180°

Proof:	Statements	Reasons
	1. draw <i>l</i> AC through B	1. Parallel Postulate
	2. m<4 + m<2 + m<5 = 180	2. Linear Pair Postulate (Triple)
	3. m<4 = m<1	3. Alternate Interior Angles
	4. m<5 = m<3	4. Alternate Interior Angles
	5. m<1 + m<2 + m<3 = 180	5. Substitution Property

Corollary

The acute angles of a right triangle are complementary.

Given: ∆ABC is a right triangle Prove: m <a +="" m<b="90°</th"><th>C</th>	C
Proof: Statements	Reasons
1. m <a +="" m<b="" m<c="180</td"><td>1. Triangle Sum Theorem</td>	1. Triangle Sum Theorem
2. <c a="" angle<="" is="" right="" td=""><td>2. Defn. of a rt. Δ</td></c>	2. Defn. of a rt. Δ
3. m <c 90<="" =="" td=""><td>3. Defn. of a rt. <</td></c>	3. Defn. of a rt. <
4. m <a +="" m<b="90</td"><td>4. Subt. Prop.</td>	4. Subt. Prop.
	I contraction of the second seco

B

Read example 2 on page 233.

Example: The measure of one of the acute angles in a right triangle is given.

What is the measure of the other acute angle?

Hint: This is the same as asking what the complement of the given angle is. Recall: complement = 90 - angle

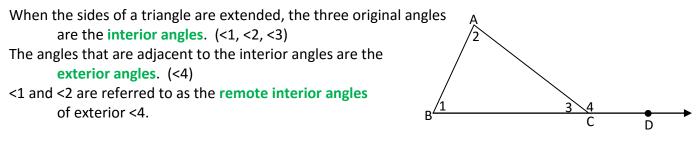
a. 36.7°	b. a°	c. (2x−4)°
90 – 36.7	(90 – a)°	90 - (2x - 4)
53.3°		90 – 2x + 4
		(94 – 2x)°

White Board Activity:

Practice: The measure of one of the acute angles in a right triangle is given. What is the measure of the other acute angle?

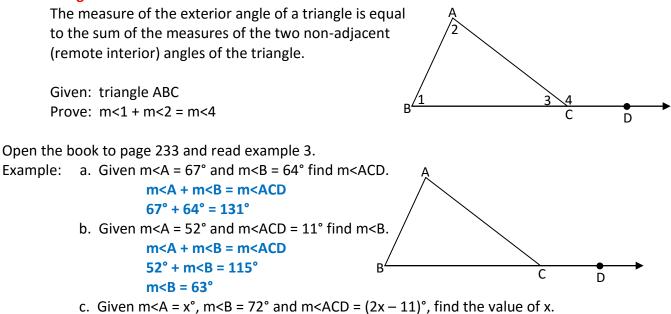
a. 63.7°	b. x°	c. 48 2/5°
90 - 63.7 = 26.3°	(90 – x)°	90 – 48 2/5 = 41 3/5°

Additional Practice:


The measure of one acute angle of a right triangle is four times the measure of the other acute angle. Find the measure of each acute angle.

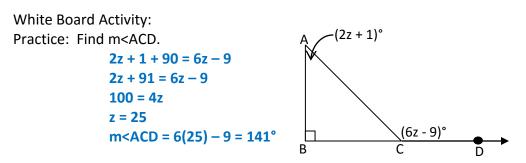
Let x and 4x represent the two angles x + 4x = 90 5x = 90 $x = 18^{\circ}$ $4x = 72^{\circ}$

Corollary


The measure of each angle of an equiangular triangle is 60°

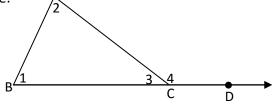
Explanation: If a triangle is equilateral then it is equiangular. Let the measure of each angle be x, then x + x + x = 180° or 3x = 180°. This results in x = 60°

m<1 + m<2 + m<3 = 180 and m<3 + m<4 = 180 therefore m<1 + m<2 = m<4. This relationship is called the **Exterior Angle Theorem**.


Exterior Angle Theorem

Then find the measure of the exterior angle.

$$72 + x = 2x - 11$$
 $83 = x$


exterior angle = 2(83) - 11 = 155°

Exterior Angle Theorem

The measure of the exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent (remote interior) angles of the triangle. A

Given: triangle ABC Prove: m<1 + m<2 = m<4

- 50)°

Proof:

- 1. ΔABC w/exterior <4
- 2. m<1 + m<2 + m<3 = 180

Statements

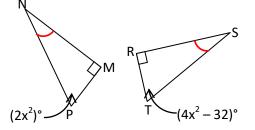
- 3. <3 and <4 are a linear pair
- 4. m<3 + m<4 = 180
- 5. m<1 + m<2 + m<3 = m<3 + m<4
- 6. m<1 + m<2 = m<4

- 1. Given
- 2. Triangle Sum Theorem
- 3. Definition of a Linear Pair
- 4. Linear Pair Postulate
- 5. Substitution Property
- 6. Subtraction Property

Third Angle Theorem

If two angles on one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent. $\zeta \qquad \zeta \qquad \zeta$

Open the book to page 234 and read example 4.


Example: Find m<K and m<J.

 $4y^2 = 6y^2 - 40$ $2y^2 = 50$ $y^2 = 25$ y = 5 $m < K = 4(5^2) = 100^\circ$ and $m < J = 100^\circ$

White Board Activity:

Practice: Find m<P and m<T.

$$2x^{2} = 4x^{2} - 32$$
 $2x^{2} = 32$
 $x^{2} = 16$ $x = \pm 4$
 $m < P = m < T = 2(16) = 32^{\circ}$

Assessment:

Question student pairs.

Independent Practice:

Text: pgs. 235 – 238 prob. 4 – 22, 29 – 32, 34 – 36. Explorations: pg. 145 prob. 3 – 12.

For a Grade:

Text: pgs. 235 – 237 prob. 16, 20, 22, 34.