Reteach

Lines That Intersect Circles

Identify each line or segment that intersects each circle.

1. __

2. __

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at that point.

3. __

4. __
In the figure above, $EF = 2y$ and $EG = y + 8$. Find EF.

$EF = EG \quad \text{2 segs. tangent to } \bigodot \text{ from same ext. pt. } \rightarrow \text{ segs. } \cong$.

$2y = y + 8 \quad \text{Substitute } 2y \text{ for } EF \text{ and } y + 8 \text{ for } EG.$

$y = 8 \quad \text{Subtract } y \text{ from each side.}$

$EF = 2(8) \quad EF = 2y; \text{ substitute } 8 \text{ for } y.$

$= 16 \quad \text{Simplify.}$

The segments in each figure are tangent to the circle. Find each length.

5. BC

6. LM

7. RS

8. JK
Answers for the chapter Circles

12-1 LINES THAT INTERSECT CIRCLES

Practice A

Practice B

1. chords: \(\overline{BC} \); secant: \(\overline{BC} \); tangent: \(\ell \); diam.: \(\overline{BC} \); radii: \(\overline{AB}, \overline{AC} \)
2. chords: \(\overline{RQ}, \overline{ST} \); secant: \(\overline{ST} \); tangent: \(\overline{UV} \); diam.: \(\overline{RQ} \); radii: \(\overline{PQ}, \overline{PR}, \overline{PU} \)
3. radius of \(\odot D \): 4; radius of \(\odot E \): 2; pt. of tangency: \((0, -4)\); eqn. of tangent line: \(y = -4\)
4. radius of \(\odot M \): 1; radius of \(\odot N \): 3; pt. of tangency: \((-2, -2)\); eqn. of tangent line: \(x = -2\)
5. 385,734 km 6. 7.8 m 7. 50 ft

Practice C

1. Possible answer: Draw \(\overline{AB} \). A tangent segment is perpendicular to a radius at the point of tangency. So \(\angle ACD \) and \(\angle BDC \) are right angles. Two segments perpendicular to the same segment are parallel, so \(\overline{AC} \) and \(\overline{BD} \) are parallel. Because \(\overline{AC} \) and \(\overline{BD} \) are radii of \(\odot A \) and \(\odot B \), they are congruent. Therefore \(ABDC \) is a parallelogram. Opposite sides in a parallelogram are congruent, so \(\overline{CD} \equiv \overline{AB} \). Similar reasoning will show that \(\overline{EF} \equiv \overline{AB} \). By the Transitive Property of Congruence, \(\overline{CD} \equiv \overline{EF} \).

2. Possible answer: It is given that \(\overline{RS} \) and \(\overline{TU} \) are not parallel, so they must meet at some point. Call this point \(X \). \(\overline{XR} \) and \(\overline{XT} \) are tangent to \(\odot P \) and \(\odot Q \). Because tangent segments from a common point to a circle are congruent, \(X \equiv X \) and \(X \equiv X \). The Segment Addition Postulate shows that \(X \equiv X + X \) and \(X \equiv X + U \). Thus, by the Transitive Property, \(X \equiv X + X \). By the Addition Property of Equality, \(X \equiv X \), and therefore \(\overline{RS} \parallel \overline{TU} \).

3. Possible answer: It is given that \(\overline{IM} \) and \(\overline{JL} \) are tangent segments. They intersect at point \(K \). Because tangent segments from a common point to a circle are congruent, \(K \equiv K \) and \(K \equiv K \). By the Addition Property of Equality, \(K \equiv K + K \). The Segment Addition Postulate shows that \(IM = K + K \) and \(JL = K + K \). Thus, by the Transitive Property of Equality, \(IM = J \) and therefore \(IM \parallel JL \).

4. 50 m 5. 8.5 ft or 16.5 ft

Reteach

1. chord: \(\overline{FG} \); secant: \(\ell \); tangent: \(m \); diam.: \(\overline{FG} \); radii: \(\overline{HF} \) and \(\overline{HG} \)
2. chord: \(\overline{LM} \); secant: \(\overline{LM} \); tangent: \(\overline{MN} \); radius: \(\overline{JK} \)
3. \(\odot N \): \(r = 3 \); \(\odot P \): \(r = 1 \); pt. of tangency: \((-1, -2)\); tangent line: \(y = -2\)
4. \(\odot S \): \(r = 4 \); \(\odot T \): \(r = 2 \); pt. of tangency: \((7, 0)\); tangent line: \(x = 7\)
5. 6 6. 14 7. 10 8. 19

Challenge

1. \(ST = SU \)
2. If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency (Theorem 11-1-1).
3. If two segments are tangent to a circle from the same external point, then the